3.4.84 \(\int \frac {x}{(a+b x^3) \sqrt {c+d x^3}} \, dx\) [384]

3.4.84.1 Optimal result
3.4.84.2 Mathematica [A] (verified)
3.4.84.3 Rubi [A] (verified)
3.4.84.4 Maple [C] (warning: unable to verify)
3.4.84.5 Fricas [F(-1)]
3.4.84.6 Sympy [F]
3.4.84.7 Maxima [F]
3.4.84.8 Giac [F]
3.4.84.9 Mupad [F(-1)]

3.4.84.1 Optimal result

Integrand size = 22, antiderivative size = 64 \[ \int \frac {x}{\left (a+b x^3\right ) \sqrt {c+d x^3}} \, dx=\frac {x^2 \sqrt {1+\frac {d x^3}{c}} \operatorname {AppellF1}\left (\frac {2}{3},1,\frac {1}{2},\frac {5}{3},-\frac {b x^3}{a},-\frac {d x^3}{c}\right )}{2 a \sqrt {c+d x^3}} \]

output
1/2*x^2*AppellF1(2/3,1,1/2,5/3,-b*x^3/a,-d*x^3/c)*(1+d*x^3/c)^(1/2)/a/(d*x 
^3+c)^(1/2)
 
3.4.84.2 Mathematica [A] (verified)

Time = 10.04 (sec) , antiderivative size = 65, normalized size of antiderivative = 1.02 \[ \int \frac {x}{\left (a+b x^3\right ) \sqrt {c+d x^3}} \, dx=\frac {x^2 \sqrt {\frac {c+d x^3}{c}} \operatorname {AppellF1}\left (\frac {2}{3},\frac {1}{2},1,\frac {5}{3},-\frac {d x^3}{c},-\frac {b x^3}{a}\right )}{2 a \sqrt {c+d x^3}} \]

input
Integrate[x/((a + b*x^3)*Sqrt[c + d*x^3]),x]
 
output
(x^2*Sqrt[(c + d*x^3)/c]*AppellF1[2/3, 1/2, 1, 5/3, -((d*x^3)/c), -((b*x^3 
)/a)])/(2*a*Sqrt[c + d*x^3])
 
3.4.84.3 Rubi [A] (verified)

Time = 0.19 (sec) , antiderivative size = 64, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.091, Rules used = {1013, 1012}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x}{\left (a+b x^3\right ) \sqrt {c+d x^3}} \, dx\)

\(\Big \downarrow \) 1013

\(\displaystyle \frac {\sqrt {\frac {d x^3}{c}+1} \int \frac {x}{\left (b x^3+a\right ) \sqrt {\frac {d x^3}{c}+1}}dx}{\sqrt {c+d x^3}}\)

\(\Big \downarrow \) 1012

\(\displaystyle \frac {x^2 \sqrt {\frac {d x^3}{c}+1} \operatorname {AppellF1}\left (\frac {2}{3},1,\frac {1}{2},\frac {5}{3},-\frac {b x^3}{a},-\frac {d x^3}{c}\right )}{2 a \sqrt {c+d x^3}}\)

input
Int[x/((a + b*x^3)*Sqrt[c + d*x^3]),x]
 
output
(x^2*Sqrt[1 + (d*x^3)/c]*AppellF1[2/3, 1, 1/2, 5/3, -((b*x^3)/a), -((d*x^3 
)/c)])/(2*a*Sqrt[c + d*x^3])
 

3.4.84.3.1 Defintions of rubi rules used

rule 1012
Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_ 
))^(q_), x_Symbol] :> Simp[a^p*c^q*((e*x)^(m + 1)/(e*(m + 1)))*AppellF1[(m 
+ 1)/n, -p, -q, 1 + (m + 1)/n, (-b)*(x^n/a), (-d)*(x^n/c)], x] /; FreeQ[{a, 
 b, c, d, e, m, n, p, q}, x] && NeQ[b*c - a*d, 0] && NeQ[m, -1] && NeQ[m, n 
 - 1] && (IntegerQ[p] || GtQ[a, 0]) && (IntegerQ[q] || GtQ[c, 0])
 

rule 1013
Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_ 
))^(q_), x_Symbol] :> Simp[a^IntPart[p]*((a + b*x^n)^FracPart[p]/(1 + b*(x^ 
n/a))^FracPart[p])   Int[(e*x)^m*(1 + b*(x^n/a))^p*(c + d*x^n)^q, x], x] /; 
 FreeQ[{a, b, c, d, e, m, n, p, q}, x] && NeQ[b*c - a*d, 0] && NeQ[m, -1] & 
& NeQ[m, n - 1] &&  !(IntegerQ[p] || GtQ[a, 0])
 
3.4.84.4 Maple [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 9 vs. order 6.

Time = 4.26 (sec) , antiderivative size = 429, normalized size of antiderivative = 6.70

method result size
default \(-\frac {i \sqrt {2}\, \left (\munderset {\underline {\hspace {1.25 ex}}\alpha =\operatorname {RootOf}\left (b \,\textit {\_Z}^{3}+a \right )}{\sum }\frac {\left (-c \,d^{2}\right )^{\frac {1}{3}} \sqrt {2}\, \sqrt {\frac {i d \left (2 x +\frac {-i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}+\left (-c \,d^{2}\right )^{\frac {1}{3}}}{d}\right )}{\left (-c \,d^{2}\right )^{\frac {1}{3}}}}\, \sqrt {\frac {d \left (x -\frac {\left (-c \,d^{2}\right )^{\frac {1}{3}}}{d}\right )}{-3 \left (-c \,d^{2}\right )^{\frac {1}{3}}+i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}}}\, \sqrt {-\frac {i d \left (2 x +\frac {i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}+\left (-c \,d^{2}\right )^{\frac {1}{3}}}{d}\right )}{2 \left (-c \,d^{2}\right )^{\frac {1}{3}}}}\, \left (i \left (-c \,d^{2}\right )^{\frac {1}{3}} \underline {\hspace {1.25 ex}}\alpha \sqrt {3}\, d -i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {2}{3}}+2 \underline {\hspace {1.25 ex}}\alpha ^{2} d^{2}-\left (-c \,d^{2}\right )^{\frac {1}{3}} \underline {\hspace {1.25 ex}}\alpha d -\left (-c \,d^{2}\right )^{\frac {2}{3}}\right ) \Pi \left (\frac {\sqrt {3}\, \sqrt {\frac {i \left (x +\frac {\left (-c \,d^{2}\right )^{\frac {1}{3}}}{2 d}-\frac {i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}}{2 d}\right ) \sqrt {3}\, d}{\left (-c \,d^{2}\right )^{\frac {1}{3}}}}}{3}, \frac {b \left (2 i \left (-c \,d^{2}\right )^{\frac {1}{3}} \sqrt {3}\, \underline {\hspace {1.25 ex}}\alpha ^{2} d -i \left (-c \,d^{2}\right )^{\frac {2}{3}} \sqrt {3}\, \underline {\hspace {1.25 ex}}\alpha +i \sqrt {3}\, c d -3 \left (-c \,d^{2}\right )^{\frac {2}{3}} \underline {\hspace {1.25 ex}}\alpha -3 c d \right )}{2 d \left (a d -b c \right )}, \sqrt {\frac {i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}}{d \left (-\frac {3 \left (-c \,d^{2}\right )^{\frac {1}{3}}}{2 d}+\frac {i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}}{2 d}\right )}}\right )}{2 \underline {\hspace {1.25 ex}}\alpha \left (a d -b c \right ) \sqrt {d \,x^{3}+c}}\right )}{3 d^{2}}\) \(429\)
elliptic \(-\frac {i \sqrt {2}\, \left (\munderset {\underline {\hspace {1.25 ex}}\alpha =\operatorname {RootOf}\left (b \,\textit {\_Z}^{3}+a \right )}{\sum }\frac {\left (-c \,d^{2}\right )^{\frac {1}{3}} \sqrt {2}\, \sqrt {\frac {i d \left (2 x +\frac {-i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}+\left (-c \,d^{2}\right )^{\frac {1}{3}}}{d}\right )}{\left (-c \,d^{2}\right )^{\frac {1}{3}}}}\, \sqrt {\frac {d \left (x -\frac {\left (-c \,d^{2}\right )^{\frac {1}{3}}}{d}\right )}{-3 \left (-c \,d^{2}\right )^{\frac {1}{3}}+i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}}}\, \sqrt {-\frac {i d \left (2 x +\frac {i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}+\left (-c \,d^{2}\right )^{\frac {1}{3}}}{d}\right )}{2 \left (-c \,d^{2}\right )^{\frac {1}{3}}}}\, \left (i \left (-c \,d^{2}\right )^{\frac {1}{3}} \underline {\hspace {1.25 ex}}\alpha \sqrt {3}\, d -i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {2}{3}}+2 \underline {\hspace {1.25 ex}}\alpha ^{2} d^{2}-\left (-c \,d^{2}\right )^{\frac {1}{3}} \underline {\hspace {1.25 ex}}\alpha d -\left (-c \,d^{2}\right )^{\frac {2}{3}}\right ) \Pi \left (\frac {\sqrt {3}\, \sqrt {\frac {i \left (x +\frac {\left (-c \,d^{2}\right )^{\frac {1}{3}}}{2 d}-\frac {i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}}{2 d}\right ) \sqrt {3}\, d}{\left (-c \,d^{2}\right )^{\frac {1}{3}}}}}{3}, \frac {b \left (2 i \left (-c \,d^{2}\right )^{\frac {1}{3}} \sqrt {3}\, \underline {\hspace {1.25 ex}}\alpha ^{2} d -i \left (-c \,d^{2}\right )^{\frac {2}{3}} \sqrt {3}\, \underline {\hspace {1.25 ex}}\alpha +i \sqrt {3}\, c d -3 \left (-c \,d^{2}\right )^{\frac {2}{3}} \underline {\hspace {1.25 ex}}\alpha -3 c d \right )}{2 d \left (a d -b c \right )}, \sqrt {\frac {i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}}{d \left (-\frac {3 \left (-c \,d^{2}\right )^{\frac {1}{3}}}{2 d}+\frac {i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}}{2 d}\right )}}\right )}{2 \underline {\hspace {1.25 ex}}\alpha \left (a d -b c \right ) \sqrt {d \,x^{3}+c}}\right )}{3 d^{2}}\) \(429\)

input
int(x/(b*x^3+a)/(d*x^3+c)^(1/2),x,method=_RETURNVERBOSE)
 
output
-1/3*I/d^2*2^(1/2)*sum(1/_alpha/(a*d-b*c)*(-c*d^2)^(1/3)*(1/2*I*d*(2*x+1/d 
*(-I*3^(1/2)*(-c*d^2)^(1/3)+(-c*d^2)^(1/3)))/(-c*d^2)^(1/3))^(1/2)*(d*(x-1 
/d*(-c*d^2)^(1/3))/(-3*(-c*d^2)^(1/3)+I*3^(1/2)*(-c*d^2)^(1/3)))^(1/2)*(-1 
/2*I*d*(2*x+1/d*(I*3^(1/2)*(-c*d^2)^(1/3)+(-c*d^2)^(1/3)))/(-c*d^2)^(1/3)) 
^(1/2)/(d*x^3+c)^(1/2)*(I*(-c*d^2)^(1/3)*_alpha*3^(1/2)*d-I*3^(1/2)*(-c*d^ 
2)^(2/3)+2*_alpha^2*d^2-(-c*d^2)^(1/3)*_alpha*d-(-c*d^2)^(2/3))*EllipticPi 
(1/3*3^(1/2)*(I*(x+1/2/d*(-c*d^2)^(1/3)-1/2*I*3^(1/2)/d*(-c*d^2)^(1/3))*3^ 
(1/2)*d/(-c*d^2)^(1/3))^(1/2),1/2*b/d*(2*I*(-c*d^2)^(1/3)*3^(1/2)*_alpha^2 
*d-I*(-c*d^2)^(2/3)*3^(1/2)*_alpha+I*3^(1/2)*c*d-3*(-c*d^2)^(2/3)*_alpha-3 
*c*d)/(a*d-b*c),(I*3^(1/2)/d*(-c*d^2)^(1/3)/(-3/2/d*(-c*d^2)^(1/3)+1/2*I*3 
^(1/2)/d*(-c*d^2)^(1/3)))^(1/2)),_alpha=RootOf(_Z^3*b+a))
 
3.4.84.5 Fricas [F(-1)]

Timed out. \[ \int \frac {x}{\left (a+b x^3\right ) \sqrt {c+d x^3}} \, dx=\text {Timed out} \]

input
integrate(x/(b*x^3+a)/(d*x^3+c)^(1/2),x, algorithm="fricas")
 
output
Timed out
 
3.4.84.6 Sympy [F]

\[ \int \frac {x}{\left (a+b x^3\right ) \sqrt {c+d x^3}} \, dx=\int \frac {x}{\left (a + b x^{3}\right ) \sqrt {c + d x^{3}}}\, dx \]

input
integrate(x/(b*x**3+a)/(d*x**3+c)**(1/2),x)
 
output
Integral(x/((a + b*x**3)*sqrt(c + d*x**3)), x)
 
3.4.84.7 Maxima [F]

\[ \int \frac {x}{\left (a+b x^3\right ) \sqrt {c+d x^3}} \, dx=\int { \frac {x}{{\left (b x^{3} + a\right )} \sqrt {d x^{3} + c}} \,d x } \]

input
integrate(x/(b*x^3+a)/(d*x^3+c)^(1/2),x, algorithm="maxima")
 
output
integrate(x/((b*x^3 + a)*sqrt(d*x^3 + c)), x)
 
3.4.84.8 Giac [F]

\[ \int \frac {x}{\left (a+b x^3\right ) \sqrt {c+d x^3}} \, dx=\int { \frac {x}{{\left (b x^{3} + a\right )} \sqrt {d x^{3} + c}} \,d x } \]

input
integrate(x/(b*x^3+a)/(d*x^3+c)^(1/2),x, algorithm="giac")
 
output
integrate(x/((b*x^3 + a)*sqrt(d*x^3 + c)), x)
 
3.4.84.9 Mupad [F(-1)]

Timed out. \[ \int \frac {x}{\left (a+b x^3\right ) \sqrt {c+d x^3}} \, dx=\int \frac {x}{\left (b\,x^3+a\right )\,\sqrt {d\,x^3+c}} \,d x \]

input
int(x/((a + b*x^3)*(c + d*x^3)^(1/2)),x)
 
output
int(x/((a + b*x^3)*(c + d*x^3)^(1/2)), x)